Efecto de la viscosidad sanguínea sobre el flujo sanguíneo cerebral en una población residente a gran altitud
DOI:
https://doi.org/10.35663/amp.2024.414.3156Palabras clave:
Viscosidad sanguínea, Circulación cerebrovascular, Gran altitudResumen
Objetivo: Determinar el nivel de correlación entre la viscosidad sanguínea y el flujo sanguíneo cerebral en personas aclimatadas a hipoxia crónica que tienen niveles altos de viscosidad sanguínea. Materiales y métodos: Se realizó un estudio observacional prospectivo en adultos jóvenes asintomáticos residentes en la ciudad del Cusco (3399 m de altitud). Todos los participantes fueron examinados a velocidades de cizallamiento bajas y altas (75 y 300 s-1) para simular el componente dinámico de la viscosidad de la sangre. Se realizó un estudio Doppler transcraneal de la arteria cerebral media para medir las velocidades de flujo (VF) sistólica, diastólica y media, y el índice de resistencia y pulsatilidad (IP). Resultados: Se incluyeron un total de 131 participantes. La mediana de los niveles de viscosidad fue de 5,01 cP (rango intercuartílico [RIC]: 4,45-5,73 cP) a los 300 s−1 y de 6,16 cP (RIC: 5,58-7,20 cP) a los 75 s−1, la VF media fue de 57 cm/s (RIC: 50-65 cm/s) y el IP fue de 0,91 (0,86-1,02). La viscosidad sanguínea se correlacionó negativamente con la VF media (r: −0,17; p=0,007), mientras que no mostró correlación con otros valores de flujo sanguíneo, resistencia o IP. Los valores del coeficiente de determinación R2 fueron inferiores a 0,1 en todos los casos. Conclusiones: Se observó una correlación débil entre los niveles de viscosidad sanguínea con la velocidad media del flujo sanguíneo cerebral, y la ausencia de correlación de otros parámetros entre estas dos variables. Este hallazgo sugiere que, en individuos jóvenes y clínicamente sanos, existen mecanismos de autorregulación que compensan las variaciones de viscosidad sanguínea.
Descargas
Referencias
1. Clement P, Mutsaerts HJ, Václavů L, Ghariq E, Pizzini FB, Smits M, et al. Variability of physiological brain perfusion in healthy subjects - A systematic review of modifiers. Considerations for multi-center ASL studies. J Cereb Blood Flow Metab. 2018;38(9):1418-1437. doi: 10.1177/0271678X17702156.
2. Furukawa K, Abumiya T, Sakai K, Hirano M, Osanai T, Shichinohe H, et al. Increased Blood Viscosity in Ischemic Stroke Patients with Small Artery Occlusion Measured by an Electromagnetic Spinning Sphere Viscometer. J Stroke Cerebrovasc Dis. 2016;25(11):2762-2769. doi: 10.1016/j.jstrokecerebrovasdis.2016.07.031.
3. Song SH, Kim JH, Lee JH, Yun YM, Choi DH, Kim HY. Elevated blood viscosity is associated with cerebral small vessel disease in patients with acute ischemic stroke. BMC Neurol. 2017;17(1):20. doi: 10.1186/s12883-017-0808-3.
4. Huamaní C, Oré-Montalvo V, Bayona-Pancorbo W, Pérez-Alviz C, Acuña-Mamani JC, Córdova-Heredia G, et al. Alta viscosidad sanguínea en pacientes con Ictus Isquémico que residen a gran altitud High blood viscosity in patients with ischemic stroke residing at high altitude. Rev Ecuat Neurol. 2024;33(1):41-46. doi: 10.46997/ revecuatneurol33100041.
5. Frolov SV, Sindeev SV, Liepsch D, Balasso A, Arnold P, Kirschke JS, et al. Newtonian and non-newtonian blood flow at a 90∘-bifurcation of the cerebral artery: a comparative study of fluid viscosity models. J Mech Med Biol. 2018;18(5):1850043. doi: 10.1142/ s0219519418500434.
6. Franco JM, Partal P. The Newtonian fluid. Rheology. 2010:1:74-95.
7. Huamaní C, Cruz-Huanca L, Herrera-Aedo R, Damian-Saavedra P, Marmanillo-Valenz R, Antonio D, et al. Importancia de la medición de la Viscosidad sanguínea: retos y limitaciones. Acta Med Peru. 2023;40(2):161-6. doi: 10.35663/amp.2023.402.239.
8. Mehri R, Mavriplis C, Fenech M. Red blood cell aggregates and their effect on non-Newtonian blood viscosity at low hematocrit in a two-fluid low shear rate microfluidic system. PLoS One. 2018;13(7):e0199911. doi: 10.1371/journal.pone.0199911.
9. Abbasian M, Shams M, Valizadeh Z, Moshfegh A, Javadzadegan A, Cheng S. Effects of different non-Newtonian models on unsteady blood flow hemodynamics in patient-specific arterial models with in-vivo validation. Comput Methods Programs Biomed. 2020;186:105185. doi: 10.1016/j.cmpb.2019.105185.
10. Cho YI, Cho DJ. Hemorheology and microvascular disorders. Korean Circ J. 2011;41(6):287-95. doi: 10.4070/kcj.2011.41.6.287.
11. Nair V, Singh S, Ashraf MZ, Yanamandra U, Sharma V, Prabhakar A, et al. Epidemiology and pathophysiology of vascular thrombosis in acclimatized lowlanders at high altitude: A prospective longitudinal study. Lancet Reg Health Southeast Asia. 2022;3:100016. doi: 10.1016/j.lansea.2022.05.005.
12. Wilson MH, Newman S, Imray CH. The cerebral effects of ascent to high altitudes. Lancet Neurol. 2009;8(2):175-91. doi: 10.1016/ S1474-4422(09)70014-6
13. Monge Cassinelli C, León Velarde F, Lerner de Bigio D. El reto fisiológico de vivir en los Andes. IFEA, Instituto Francés de Estudios Andinos; 2003.
14. Huamaní C, Sarmiento W, Cordova-Heredia G, Cruz-Huanca L, Damian-Saavedra P, Antonio D. Prediction of Blood Viscosity Based on Usual Hematological Parameters in a Clinically Healthy Population Living in a High-Altitude City. High Alt Med Biol. 2022;23(1):78-84. doi: 10.1089/ham.2021.0165.
15. Grotta J, Ackerman R, Correia J, Fallick G, Chang J. Whole blood viscosity parameters and cerebral blood flow. Stroke. 1982;13(3):296-301. doi: 10.1161/01.str.13.3.296.
16. Marinoni M, Ginanneschi A, Forleo P, Amaducci L. Technical limits in transcranial Doppler recording: inadequate acoustic windows. Ultrasound Med Biol. 1997;23(8):1275-7. doi: 10.1016/s0301- 5629(97)00077-x.
17. Kovacs D, Totsimon K, Biro K, Kenyeres P, Juricskay I, Kesmarky G, Toth K, et al. Viscometer validation studies for routine and experimental hemorheological measurements. Clin Hemorheol Microcirc. 2018;69(3):383-392. doi: 10.3233/CH-170301
18. Baskurt OK, Boynard M, Cokelet GC, Connes P, Cooke BM, Forconi S, et al. New guidelines for hemorheological laboratory techniques. Clin Hemorheol Microcirc. 2009;42(2):75-97. doi: 10.3233/CH2009-1202.
19. Kim H, Cho YI, Lee DH, Park CM, Moon HW, Hur M, et al. Analytical performance evaluation of the scanning capillary tube viscometer for measurement of whole blood viscosity. Clin Biochem. 2013;46(1-2):139-42. doi: 10.1016/j.clinbiochem.2012.10.015.
20. Box FM, van der Geest RJ, Rutten MC, Reiber JH. The influence of flow, vessel diameter, and non-newtonian blood viscosity on the wall shear stress in a carotid bifurcation model for unsteady flow. Invest Radiol. 2005;40(5):277-94. doi: 10.1097/01. rli.0000160550.95547.22. 21. Aaslid R, Markwalder TM, Nornes H. Noninvasive transcranial Doppler ultrasound recording of flow velocity in basal cerebral arteries. J Neurosurg. 1982;57(6):769-74. doi: 10.3171/ jns.1982.57.6.0769.
22. Irimia P, Segura T, Serena J, Moltó JM. Neurosonología: Aplicaciones diagnósticas para la práctica clínica. Editorial Médica Panamericana SA; 2011.
23. Gosling RG, King DH. Arterial assessment by Doppler-shift ultrasound. Proc R Soc Med. 1974;67(6 Pt 1):447-9.
24. Santos-Galduróz RF, Bueno OF, Yamaga LI, Armani F, Galduróz JC. Influence of blood viscosity to cerebral blood flow in older humans compared to young subjects. Clin Neurophysiol. 2012;123(1):117- 20. doi: 10.1016/j.clinph.2011.05.025.
25. Czosnyka M, Richards H, Kirkpatrick P, Pickard J. Assessment of cerebral autoregulation with ultrasound and laser Doppler wave forms--an experimental study in anesthetized rabbits. Neurosurgery. 1994;35(2):287-92; discussion 292-3. doi: 10.1227/00006123-199408000-00015.
26. Manno EM, Sorond F. Monitoring the Neurological Impact of the Critical Pathology. In: Rodríguez CN (eds). Neurosonology in Critical Care. Springer International Publishing; 2022. p. 147-159.
27. Claassen JAHR, Thijssen DHJ, Panerai RB, Faraci FM. Regulation of cerebral blood flow in humans: physiology and clinical implications of autoregulation. Physiol Rev. 2021;101(4):1487-1559. doi: 10.1152/physrev.00022.2020.
28. Feddersen B, Neupane P, Thanbichler F, Hadolt I, Sattelmeyer V, Pfefferkorn T, et al. Regional differences in the cerebral blood flow velocity response to hypobaric hypoxia at high altitudes. J Cereb Blood Flow Metab. 2015;35(11):1846-51. doi: 10.1038/ jcbfm.2015.142.
29. Subudhi AW, Fan JL, Evero O, Bourdillon N, Kayser B, Julian CG, et al. AltitudeOmics: cerebral autoregulation during ascent, acclimatization, and re-exposure to high altitude and its relation with acute mountain sickness. J Appl Physiol (1985). 2014;116(7):724-9. doi: 10.1152/japplphysiol.00880.2013.
30. wasaki K, Zhang R, Zuckerman JH, Ogawa Y, Hansen LH, Levine BD. Impaired dynamic cerebral autoregulation at extreme high altitude even after acclimatization. J Cereb Blood Flow Metab. 2011;31(1):283-92. doi: 10.1038/jcbfm.2010.88.
31. Smirl JD, Lucas SJ, Lewis NC, duManoir GR, Smith KJ, Bakker A, et al. Cerebral pressure-flow relationship in lowlanders and natives at high altitude. J Cereb Blood Flow Metab. 2014;34(2):248-57. doi: 10.1038/jcbfm.2013.178.
32. Smith LA, Melbourne A, Owen D, Cardoso MJ, Sudre CH, Tillin T, et al. Cortical cerebral blood flow in ageing: effects of haematocrit, sex, ethnicity and diabetes. Eur Radiol. 2019;29(10):5549-5558. doi: 10.1007/s00330-019-06096-w.
33. Henriksen L, Paulson OB, Smith RJ. Cerebral blood flow following normovolemic hemodilution in patients with high hematocrit. Ann Neurol. 1981;9(5):454-7. doi: 10.1002/ana.410090507.
34. Hartung G, Vesel C, Morley R, Alaraj A, Sled J, Kleinfeld D, et al. Simulations of blood as a suspension predicts a depth dependent hematocrit in the circulation throughout the cerebral cortex. PLoS Comput Biol. 2018;14(11):e1006549. doi: 10.1371/journal. pcbi.1006549.
35. Lücker A, Secomb TW, Weber B, Jenny P. The relative influence of hematocrit and red blood cell velocity on oxygen transport from capillaries to tissue. Microcirculation. 2017;24(3):10.1111/ micc.12337. doi: 10.1111/micc.12337.
36. Villafuerte FC, Corante N. Chronic Mountain Sickness: Clinical Aspects, Etiology, Management, and Treatment. High Alt Med Biol. 2016;17(2):61-9. doi: 10.1089/ham.2016.0031.
37. Stauffer E, Loyrion E, Hancco I, Waltz X, Ulliel-Roche M, Oberholzer L, et al. Blood viscosity and its determinants in the highest city in the world. J Physiol. 2020;598(18):4121-4130. doi: 10.1113/JP279694.
38. Scherle Matamoros CE, Rivero Rodríguez D. Transcranial Doppler ultrasound measurements of cerebral hemodynamic parameters in healthy volunteers at 2850 meters altitude. Radiologia (Engl Ed). 2019;61(5):405-411. English, Spanish. doi: 10.1016/j. rx.2019.04.003.
39. Brown MM, Marshall J. Regulation of cerebral blood flow in response to changes in blood viscosity. Lancet. 1985;1(8429):604-9. doi: 10.1016/s0140-6736(85)92145-2.
40. Ascolese M, Farina A, Fasano A. The Fåhræus-Lindqvist effect in small blood vessels: how does it help the heart? J Biol Phys. 2019;45(4):379-394. doi: 10.1007/s10867-019-09534-4.
41. Verbree J, Bronzwaer AS, Ghariq E, Versluis MJ, Daemen MJ, van Buchem MA, et al. Assessment of middle cerebral artery diameter during hypocapnia and hypercapnia in humans using ultra-high-field MRI. J Appl Physiol (1985). 2014;117(10):1084-9. doi: 10.1152/ japplphysiol.00651.2014.
42. Rivera-Lara L, Zorrilla-Vaca A, Healy RJ, Ziai W, Hogue C, Geocadin R, et al. Determining the Upper and Lower Limits of Cerebral Autoregulation With Cerebral Oximetry Autoregulation Curves: A Case Series. Crit Care Med. 2018;46(5):e473-e477. doi: 10.1097/ CCM.0000000000003012.
43. Puig O, Henriksen OM, Vestergaard MB, Hansen AE, Andersen FL, Ladefoged CN, et al. Comparison of simultaneous arterial spin labeling MRI and 15O-H2O PET measurements of regional cerebral blood flow in rest and altered perfusion states. J Cereb Blood Flow Metab. 2020;40(8):1621-1633. doi: 10.1177/0271678X19874643.
44. Morgan AG, Thrippleton MJ, Wardlaw JM, Marshall I. 4D flow MRI for non-invasive measurement of blood flow in the brain: A systematic review. J Cereb Blood Flow Metab. 2021;41(2):206-218. doi: 10.1177/0271678X20952014.
45. Polinder-Bos HA, Elting JWJ, Aries MJ, García DV, Willemsen AT, van Laar PJ, et al. Changes in cerebral oxygenation and cerebral blood flow during hemodialysis - A simultaneous near-infrared spectroscopy and positron emission tomography study. J Cereb Blood Flow Metab. 2020;40(2):328-340. doi: 10.1177/0271678X18818652.
Descargas
Publicado
Número
Sección
Licencia
Esta obra está bajo una Licencia Creative Commons Atribución 4.0 Internacional.
Aquellos autores/as que tengan publicaciones con esta revista, aceptan los términos siguientes:
- Los autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra, el cuál estará simultáneamente sujeto a la Licencia de reconocimiento de Creative Commons que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación esta revista.
- Los autores/as podrán adoptar otros acuerdos de licencia no exclusiva de distribución de la versión de la obra publicada (p. ej.: depositarla en un archivo telemático institucional o publicarla en un volumen monográfico) siempre que se indique la publicación inicial en esta revista.
- Se permite y recomienda a los autores/as difundir su obra a través de Internet (p. ej.: en archivos telemáticos institucionales o en su página web) antes y durante el proceso de envío, lo cual puede producir intercambios interesantes y aumentar las citas de la obra publicada. (Véase El efecto del acceso abierto).